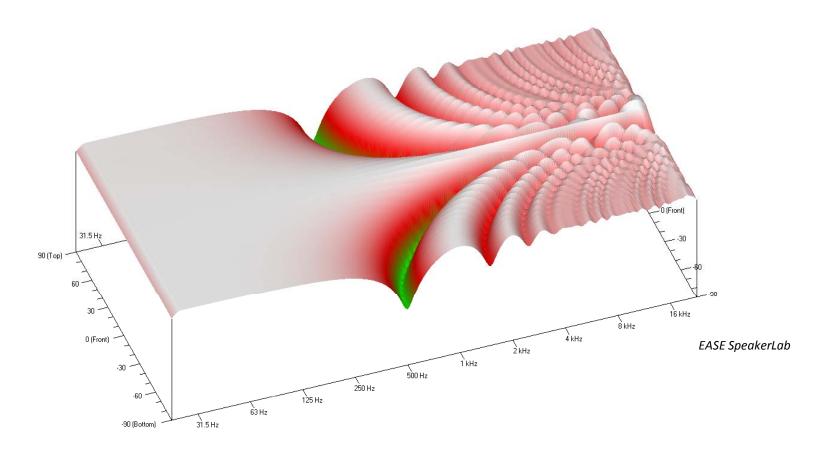
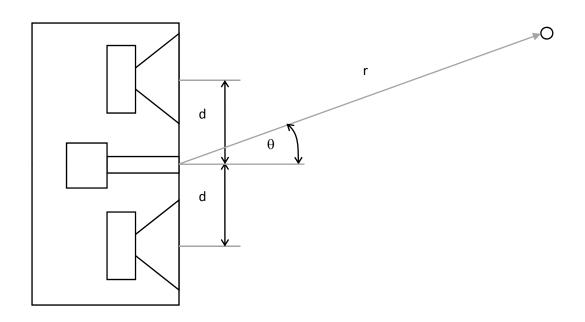
Loudspeaker Directivity Improvement Using Low Pass and All Pass Filters



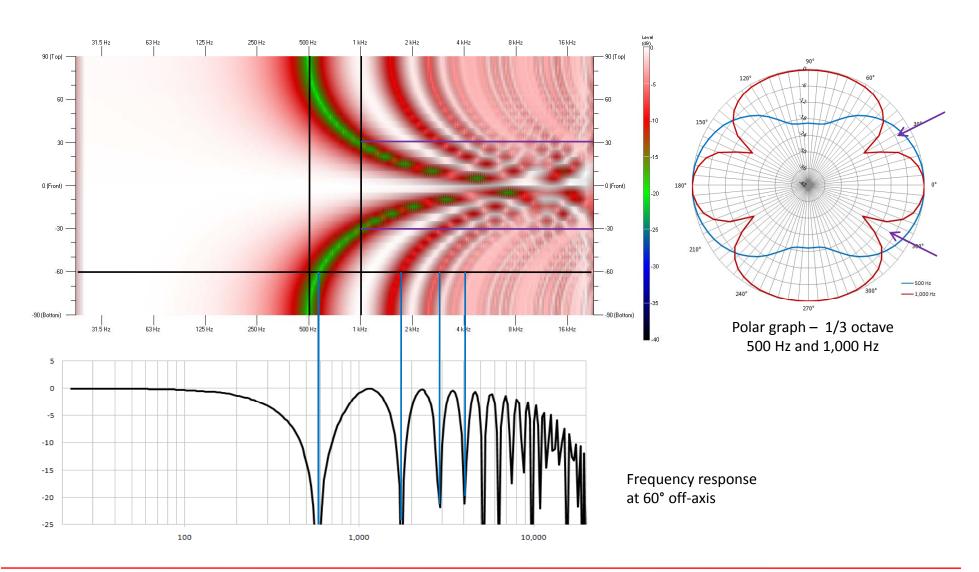


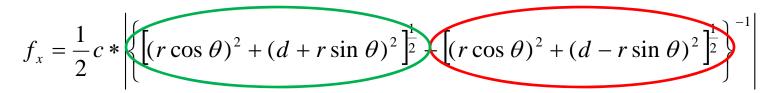
For models and graphs

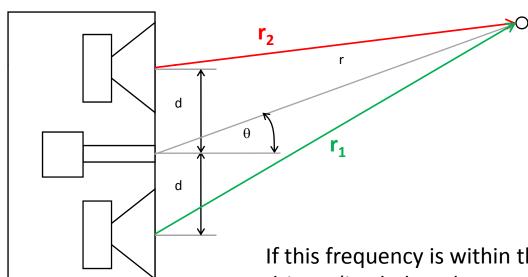
LF drivers: 250 mm (10 inches) HF horn dimension: 64 mm (2.5 inches) d = 170 mm (6.75 inches), r = 20 m (65.5 feet)

Omni-directional point sources are used in the models

<u>Vertical Directivity Map – Two LF Drivers</u>

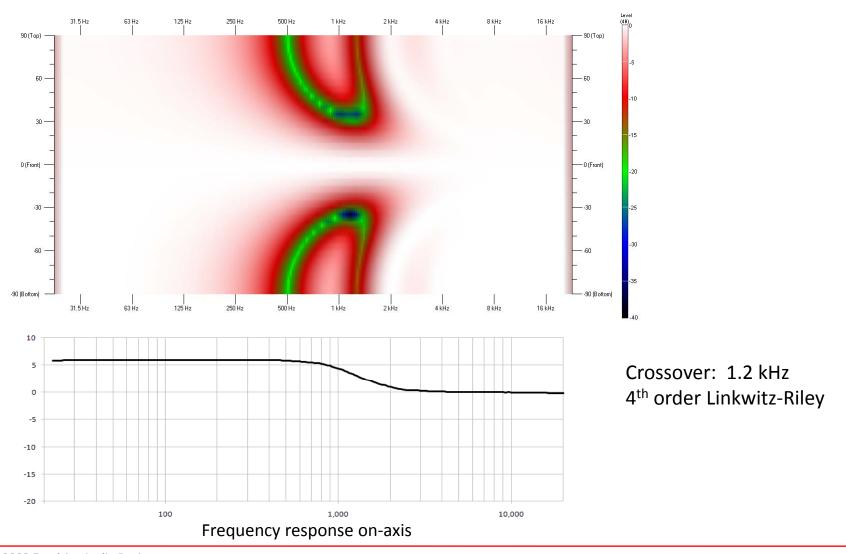


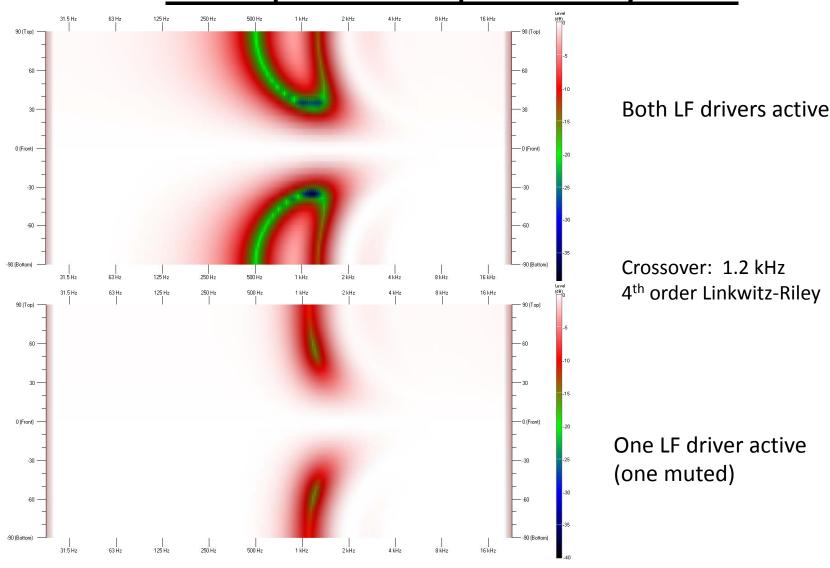




If this frequency is within the pass band of the LF drivers (i.e. below the crossover frequency), the output from one of the drivers must be attenuated in order to minimize the comb filtering.

A low pass filter may be used to accomplish this.





Determining Low Pass Filter Parameters

$$f_{\varphi} = \frac{\varphi}{360} * \frac{c}{|r_1 - r_2|}$$

$$r_1 = [(r\cos\theta)^2 + (d + r\sin\theta)^2]^{\frac{1}{2}}$$
 $r_2 = [(r\cos\theta)^2 + (d - r\sin\theta)^2]^{\frac{1}{2}}$

Used to determine the frequency of any arbitrary phase difference between the two LF drivers for a given driver spacing, off-axis angle and observation distance

Below $f_{120^{\circ}}$ there is only constructive interference Above $f_{120^{\circ}}$ there is both constructive & destructive interference (comb filtering)

At $f_{180^{\circ}}$ there is maximum cancellation

Determining Low Pass Filter Parameters

$$\frac{P_1}{P_2} = \frac{1 + P_{Roff-axis}}{1 - P_{Roff-axis}}$$

Required pressure ratio of the individual LF drivers given the desired off-axis pressure ratio

$$P_{Roff-axis} = \frac{P_{T180^{\circ}}}{P_{T0^{\circ}}}$$

Ratio of the off-axis pressure where there is maximum cancellation to the on-axis pressure

Performance Criterion

Level of P_{Roff-axis} should be no greater than -1 dB

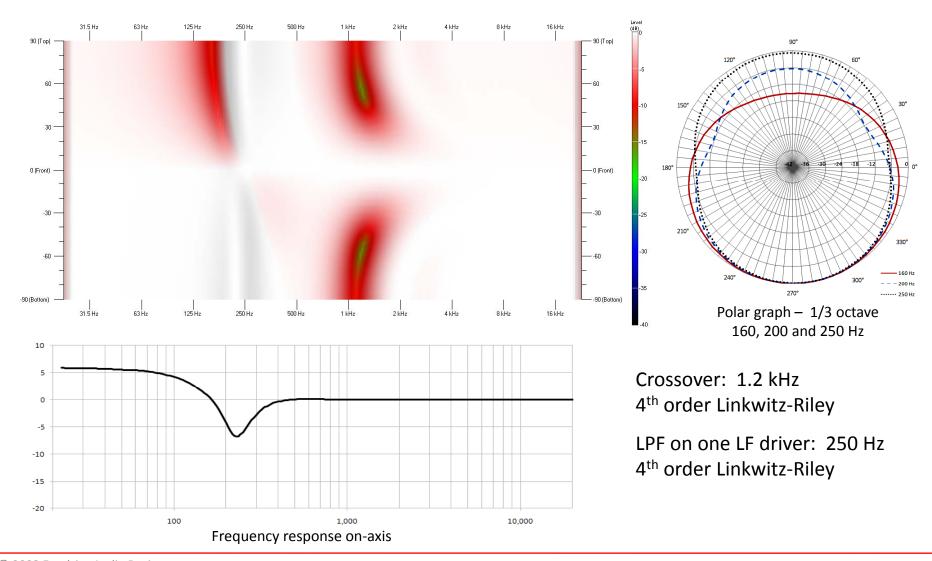
$$P_{Roff-axis} = 10^{-1/20} = 0.8913$$

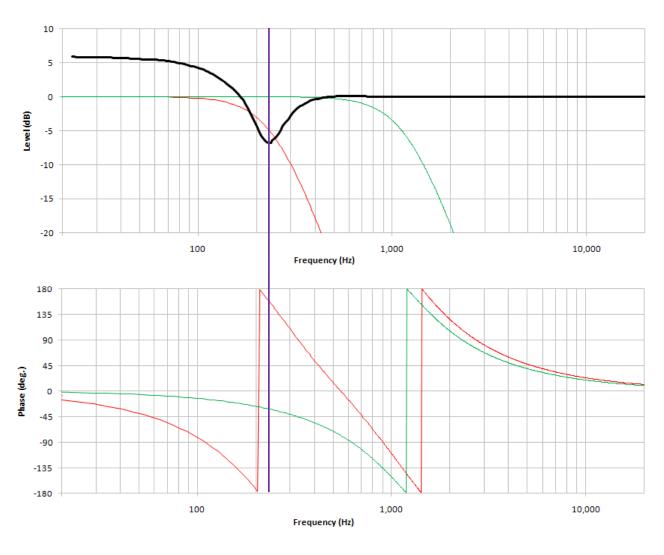
$$P_1/P_2 = 17.39$$

$$20*\log(17.39) = 24.8 dB$$

The level difference between the two LF drivers at $f_{180^{\circ}}$ should be 24.8 dB

A 4th order low pass filter with a cut-off frequency of approximately $f_{90^{\circ}}$, one octave below $f_{180^{\circ}}$, may be used to yield this attenuation



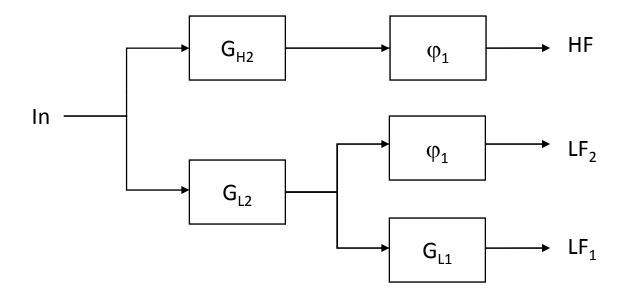


Crossover: 1.2 kHz 4th order Linkwitz-Riley

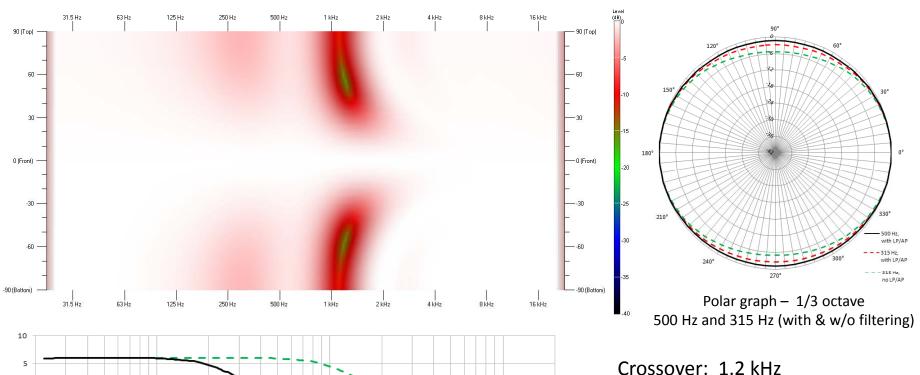
LPF on one LF driver: 250 Hz

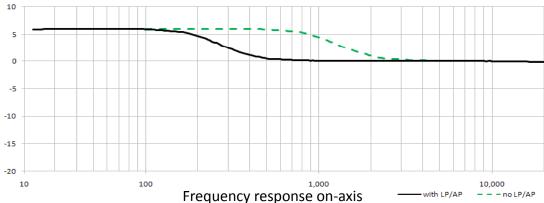
4th order Linkwitz-Riley

Phase Compensation



 ϕ_{1} is an All Pass filter with the same phase response as G_{L1} (Phase shift but with flat magnitude response)



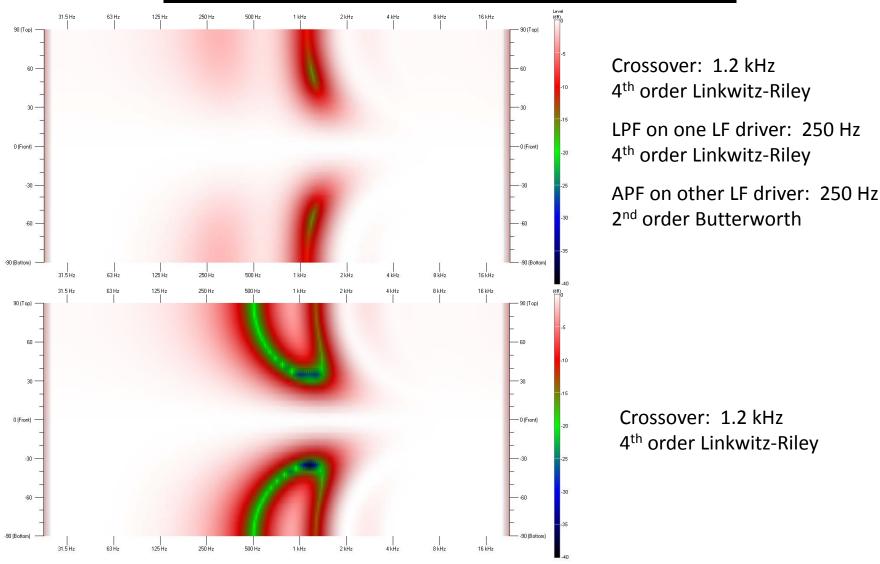


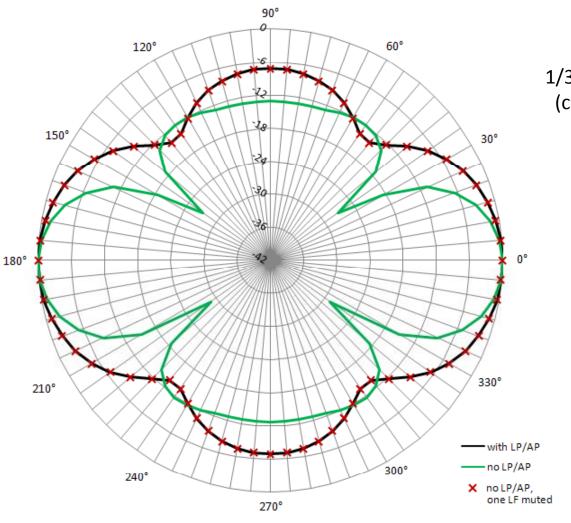
Crossover: 1.2 kHz 4th order Linkwitz-Riley

LPF on one LF driver: 250 Hz 4th order Linkwitz-Riley

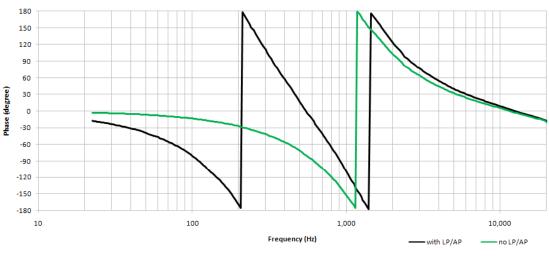
APF on other LF driver: 250 Hz

2nd order Butterworth



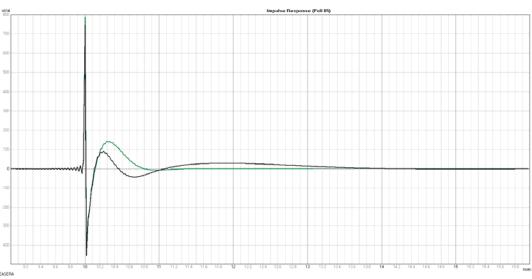


Polar graph
1/3 octave, 1.25 kHz
(crossover region)



Detrimental Effects

Phase response



—— Crossover and Low Pass / All Pass Filters

Crossover Only

Impulse response

Real Loudspeaker System

Desirable to have the directivity response of the LF pass band match that of the HF pass band.

Careful spacing of the LF drivers and choice of the LP/AP filter frequency can help extend directivity control below the crossover frequency.

$$\frac{P_1}{P_2} = \frac{1 + P_{Roff-axis}}{1 - P_{Roff-axis}}$$

$$P_{Roff-axis} = \frac{P_{T180^{\circ}}}{P_{T0^{\circ}}} = 0.5$$
 (-6 dB)

$$P1/P2 = 3.01$$

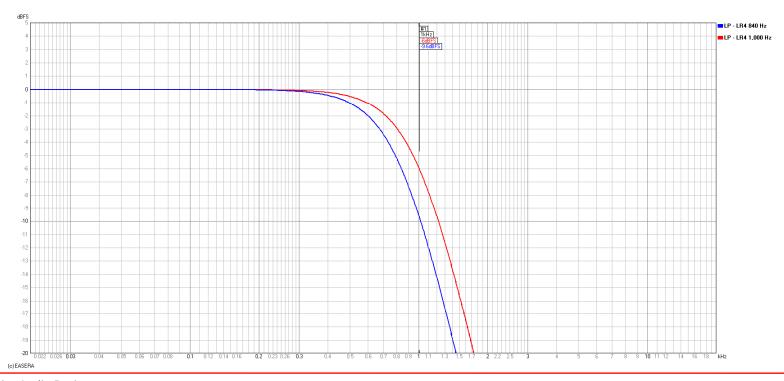
$$20*\log(3.01) = 9.6 dB$$

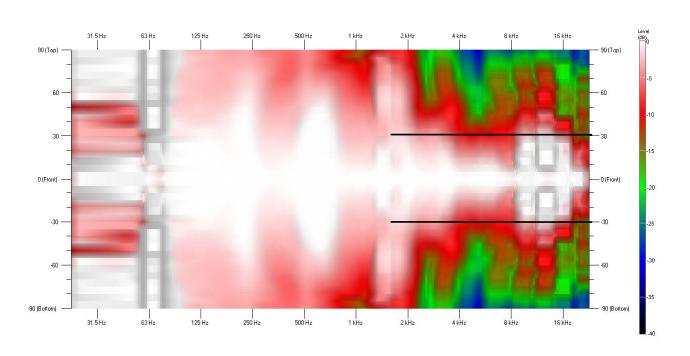
The level difference between the two LF drivers at $f_{180^{\circ}}$ should be 9.6 dB

Real Loudspeaker System

A 4th order Linkwitz-Riley low pass filter has an attenuation of 9.6 dB at a frequency approximately 1.19 times its cut-off frequency, f_c .

Reduce the LP/AP filters $f_{\rm c}$ by a reciprocal amount , 0.84. The original $f_{\rm c}$ will now have an attenuation of 9.6 dB.





Vertical Directivity Map HF horn only

> Beamwidth (-6 dB angles) 60° ranges from 50° - 70°

$$f_{\varphi} = \frac{\varphi}{360} * \frac{c}{|r_1 - r_2|}$$

$$r_1 = \left[(r\cos\theta)^2 + (d + r\sin\theta)^2 \right]^{\frac{1}{2}}$$

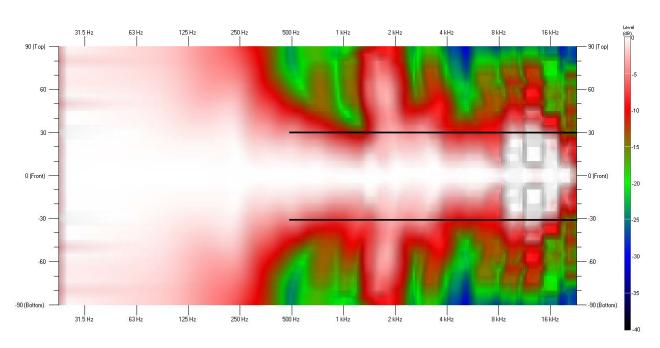
$$r_{1} = \left[(r\cos\theta)^{2} + (d + r\sin\theta)^{2} \right]^{\frac{1}{2}}$$
$$r_{2} = \left[(r\cos\theta)^{2} + (d - r\sin\theta)^{2} \right]^{\frac{1}{2}}$$

For
$$\theta$$
 = 30° and ϕ = 180°

$$f_{180^{\circ}}$$
 = 1,000 Hz f_{c} = 840 Hz

$$f_c = 840 \text{ Hz}$$

Lowered 1/6 octave $f_c = 750 \text{ Hz}$



Crossover: 1.2 kHz 4th order Linkwitz-Riley

LPF on one LF driver: 750 Hz 4th order Linkwitz-Riley

APF on other LF driver: 750 Hz

2nd order Butterworth

Real Loudspeaker System

