

Subwoofer Alignment with a Full-Range System

Perfect impulse at time t=0

Impulse Response

Magnitude Response (Frequency)

ETC Response (Envelope Time Curve)

www.excelsior-audio.com

Phase Response

Linkwitz-Riley LP & HP Filters – 4th Order, 1 kHz

Magnitude Response (Frequency)

LP – Red;

HP – Blue

ETC Response (Envelope Time Curve)

Phase Response

Linkwitz-Riley LP & HP Filters – 4th Order, 1 kHz

Impulse Response (zoomed in)

Initial energy arrivals aligned

LP – Red; HP – Blue

Summation of Linkwitz-Riley LP & HP Filters -4^{th} Order, 1 kHz

www.excelsior-audio.com

Magnitude Response (Frequency)

Summation - Green

ETC Response (Envelope Time Curve)

Phase Response

Linkwitz-Riley LP & HP Filters – 4th Order, 1 kHz

Impulse Response

HP signal delayed 0.46 ms

Peak energy arrivals aligned

LP – Red; HP – Blue

Linkwitz-Riley LP & HP Filters – 4th Order, 1 kHz

Impulse Response

HP signal delayed 0.46 ms

Peak energy arrivals aligned

LP – Red; HP – Blue; Summation of LP+HP – Green

Linkwitz-Riley LP & HP Filters – 4th Order, 1 kHz

Impulse Response

HP signal delayed 0.46 ms

Peak energy arrivals aligned

LP – Red; HP – Blue; Summation of LP+HP – Green

Linkwitz-Riley LP & HP Filters – 4th Order, 100 Hz

LP – Red; HP – Blue

www.excelsior-audio.com

Measurements and Determining Arrival Time

Allow as much HF energy output from the subwoofer as possible

Disengage LP filter or raise it to a very high frequency

More HF energy in the signal from a device increases our ability to resolve smaller time increments, $\Delta t = 1/\Delta f$

Period = 1/frequency

$$P_{20kHz} = 0.05 \text{ ms}$$

$$P_{1kHz} = 1.0 \text{ ms}$$

$$P_{100Hz} = 10 \text{ ms}$$

Measurements and Determining Arrival Time

Apparent time gap in the LP response is not due to a pure, broadband delay but rather a lack of high frequency energy content and the necessary phase shift of the low frequency energy content

Linkwitz-Riley 4th order filters at 1 kHz: LP – Red; HP – Blue;

Arrival Time Goals

Energy from adjacent pass bands (Subs & Full-Range) need to arrive at the listener at the same time

Locate the Subs and the Full-Range units very close to each other to minimize arrival time differences

1) All Ground Stacked

In many situations this is not desirable for audience coverage and other reasons

2) All Flown

While possible, and can yield very good results, it may not always be practical due to size and weight constraints

3) Flown Full-Range and Ground Stacked Subs

www.excelsior-audio.com

Very commonly seen configuration Worse case for timing differences

Arrival Time Goals

Energy from adjacent pass bands (Subs & Full-Range) need to arrive at the listener at the same time

Physically separated Subs and Full-Range

Less than 1 dB variation

Adjacent pass bands must not be out-of-phase by more than 55° At 100 Hz this is 1.53 ms

Less than 2 dB variation

Adjacent pass bands must not be out-of-phase by more than 75° At 100 Hz this is 2.08 ms

At 112 Hz this is 1.86 ms

Less than 3 dB variation

Adjacent pass bands must not be out-of-phase by more than 90° At 100 Hz this is 2.50 ms

Note: Above the crossover frequency the outputs from the filters are within 10 dB of each other and the wavelengths/periods are shorter. Arrival time constraints must be based on slightly higher frequency. For the Linkwitz-Riley 4^{th} order response in our example this will be approximately 1/6 octave.

Recap & Putting It All Together

- We know that to properly align devices we must align the initial energy arrivals, not the peak energy arrivals.
- 2) We know what to look for to determine the initial energy arrival time from full-range and low frequency band-limited loudspeakers.
- 3) We have criteria for maximum arrival time variation (time domain) from separated sources in order to keep the overall response variation (frequency domain) below a selected level.
- 4) We know how to apply filtering to the input of loudspeakers so that the output from the loudspeakers conforms to our desired target response.

www.excelsior-audio.com

Arrival Time Difference Map

www.excelsior-audio.com

For the majority of the audience area the arrival time difference ranges from 4 – 10 ms (> 90% of house-right)

For 2 dB Uniformity (+/-1 dB)

Method A

Start at the back and work forward

- 1) Look at the area(s) of smallest arrival time difference
- 2) Delay the first signal arrival by this time plus 1.9 ms (approx. 6 ms)
- 3) Examine new arrival time differences

For 2 dB Uniformity (+/-1 dB)

Subs Delayed 6 ms

Method A

Start at the back and work forward

- 1) Look at the area(s) of smallest arrival time difference
- 2) Delay the first signal arrival by 6 ms
- 3) Examine new arrival time differences
 - a) Areas greater than 1.9 ms (75°) will vary by more than 2 dB
 - b) Areas greater than 2.3 ms (90°) will vary by more than 3 dB

SPL Map – 100 Hz

No HP or LP filters applied

<u>SPL Map – 100 Hz</u>

www.excelsior-audio.com

*Using 100 Hz Linkwitz-Riley filters, no delay on Subs

This would be very similar to aligning the peak arrivals of the loudspeakers and applying 4th order Linkwitz-Riley filters to them without taking their inherent response into account

Cancellations of 6 – 9 dB over a large area

SPL Map – 100 Hz

Array Only

Subs (no delay) & Array*

Proposed Alignment Method Subs (6 ms) & Array

Proposed Alignment Method Subs (6 ms delay) & Array

> Note increased SPL below 125 Hz due to being much closer to ground-stacked subs than flown array

Frequency Response at Location 1

Proposed Alignment Method Subs (6 ms delay) & Array

Slightly increased SPL below 100 Hz due to being closer to ground-stacked subs than flown array

Frequency Response at Location 2

Proposed Alignment Method Subs (6 ms delay) & Array

Frequency Response at Location 3

Proposed Alignment Method Subs (6 ms delay) & Array

Frequency Response at Location 4

Proposed Alignment Method Subs (6 ms delay) & Array

Frequency Response at Location 5

Frequency Response

Frequency Response at Locations 1-5

Proposed Alignment Method Subs (6 ms delay) & Array

Very even coverage and response with no more than 2 dB deviation in the crossover region

Increased SPL below 125 Hz at Location 1 is due to being much closer to ground-stacked subs than flown array

For 2 dB Uniformity (+/-1 dB)

Method B

Choose area for exact alignment

- 1) Let's pick the area with a 5ms difference in arrival time
- 2) Delay the first signal arrival by this time
- 3) Examine new arrival time differences

Subs Delayed 5 ms

Method B

Choose area for exact alignment

- 1) Let's pick the area with a 5ms difference in arrival time
- 2) Delay the first signal arrival by 5 ms
- 3) Examine new arrival time differences
 - a) Areas greater than 1.9 ms (75°) will vary by more than 2 dB
 - b) Areas greater than 2.3 ms (90°) will vary by more than 3 dB

<u>SPL Map – 100 Hz</u>

The summation is still very good throughout the area.

The 5 ms delay improves the middle and rear of the coverage area at the expense of the front.

Frequency Response

Frequency Response at Locations 1-5

Proposed Alignment Method Subs (5 ms delay) & Array

Very even coverage and response with no more than 2 dB deviation in the crossover region, except for Location 1.

This is due to it being out of alignment by more than 1.9 ms (approx. 2.5 - 3 ms).

Full-Range Overlapping Subs

Extending LF output of fullrange array to overlap the output from the subs

Full-Range new filtering:

HP - 75 Hz, 2nd order Butterworth

AP - 10 Hz, 1st order

AP - 80 Hz, 1st order

www.excelsior-audio.com

We must still maintain matching phase response of the subs through the crossover region

Subs - Red

Full-Range original filtering—Blue Full-Range with new filtering— Green

Full-Range Overlapping Subs

The overlapping response of the full-range array with the subwoofers results in a +3 dB bump in the combined system response.

www.excelsior-audio.com

Subs - Red Full-Range with new filtering- Green Subs + Full-Range - Black

Subs (6 ms) & Overlapping Array

The summation is still very good throughout the area.

The overlapping neither significantly helps nor hurts the coverage.

It just increases the overall level a bit, but only in the crossover region.

This could have easily been achieved with system EQ.

Proposed Alignment Method Subs (6 ms) & Array

Frequency Response

Frequency Response at Locations 1-5

Proposed Alignment Method
Subs (6 ms delay) & Overlapping Array

Similar response to original filtering but with increased SPL in the 50 - 150 Hz region.

Frequency Response

Frequency Response at Locations 1-5

Comparison of the loudspeakers at the same locations with the original filtering and with the full-range array overlapping the sub

Conclusions

For the most consistent response over a relatively large area:

- 1) Determine the differences in initial energy arrival times for the subwoofer and the full-range loudspeakers over the intended coverage (audience) area
- 2) Choose the target region of the coverage area in which the subwoofer and the full-range loudspeakers should be in near perfect alignment
- 3) Align the initial energy arrivals of the subwoofer and the full-range loudspeakers in the *time domain*
- 4) Choose a target alignment response function in the frequency domain for the outputs of the subwoofer and full-range loudspeakers *after* the crossover filtering has been applied, e.g. Linkwitz-Riley 4th order
- 5) Align the phase responses of the subwoofer and the full-range loudspeakers through the crossover region in the frequency domain